BMS lab facilities

Brain Computer Interfaces Testbed

Brain Computer Interfaces (or BCI) have become a hot topic in both science and popular culture. The basic notion of using one’s brain as direct input for both the control and exchange of information with a computer system sparks the imagination. Visions of keyboard-less computers, and adaptive command centers often spring to mind. At the University of Twente’s BMS lab, we work on realizing these visions. Together with our Partners at Thales, Artinis Medical Systems, Noldus Information Technologies and Vidi Nexis, we are setting up a testing ground and development center at the BMS lab for both the fundamental science and BCI applications. Thanks to years of experience with the use of EEG equipment and the underlying science, the BMS lab can facilitate, develop and support the BCI testbed.

A basic diagram on the working of Brain Computer Interfaces

With Brain Computer Interfaces we hope to enable the creation of work- and private spaces that adapt to both the teamwork of the group and the state of mind of the individual.

The three BCI use cases

Brain Computer Interfaces are a broad concept and could entail many different types of connections between man and machine. The research project at the BMS lab is defined by a focus on adaptability to the human state of mind. Three use cases serve as the basis for the research being conducted at the BCI testbed. All three use cases have a common theme based around the feedback from sensors, like those measuring brain activity (EEG), heart rate or stress, to adapt and change what machines are showing or how processes are being run. The following three use cases form the basis of the BCI testbed.

Image of a women sitting with an EEG and controlling a device with her brain signals

1. Adapting to user stress

Stress is a major factor in the workplace. Especially in places where rapid action or decision making are key. Think of places like the command center of a ship or control room of a large facility. The first use case centers around identifying how people are coping with the workload and the associated stress and when it becomes too much. The aim is then to find a way to adapt the workload, task division or presentation to the individual. One example could be to lighten the workload of radar operators when the system notices that they cannot keep up.

2. Adaptive screen technology

Screens are all around us in our daily life. Their message is often static, impersonal or aimed at the masses. This presents a challenge as both the needs and preferences of audiences differ greatly. The BCI testbed focuses on methods to adapt screens automatically to the user based upon their experiences workload. The system could remove or add information based upon the availability of scarcity of mental resources. Think of a case wherein break room screens adapt to the individual to show less scheduling and work related information to someone that is experiencing a lot of stress. That way screens and the information they send become more relevant and in sync with their environment and audience.

3. Team and machine interaction

The final use case within the BCI testbed concerns the interaction between both team members and others and between team members and machines. One goal is to develop visualizations that illustrate team interactions and teamwork, which allows for the more effective management based upon team effectiveness. Factors included in these studies include trust in machines, trust in the team members and teamwork. The possible end result is an application that provides immediately applicable advice for teamwork based upon these measurements.

Where is the BCI testbed headed?

Work has started on realizing the potential of the BCI testbed. The research will consist of two main stages, namely the sensing and utilization of brain signals and the development of applications with practical value. Researchers working for both the partners and the University of Twente are working together on tackling the challenges they face within the various underlying projects. The further development of the BCI testbed and its applications has become one of the long term knowledge development projects within the scope of the BMS lab and will feature in future projects.

Partners of the BCI testbed

The partners of the BCI testbed

What does the BMS lab offer to the BCI testbed?

BCI testbed in the media

The BCI testbed has gathered attention in the media due to its versatile uses and their implications. From radio interviews to numerous news articles all inspired by the great potential for generating new knowledge as well as new findings and their connotations. Furthermore, additional articles have been written about the functionalities and benefits and promising projects of the BCI testbed such as the ones by Noldus, HBA Lab and Artinis. Most significantly, master’s student Interaction Technology, Max Slutter’s project has been further covered UToday and Additionally, the project was covered in Radio 538 interview and on the UT’s newspaper.

Research and Publications

Apart from the media, the BCI testbed has inspired a broad body of research within the BMS Lab. Examples of the research conducted and published so far include:

Have you become interested in our research or want to take part in it?

Or start your own project >>>